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Electrostatic sums for polymer chains* 
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A rapidly convergent expression is given for calculating the Madelung energy 
of infinite linear polymers with small radius. 
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1. Introduction 

The electrostatic or Madelung energy is an important contribution to the total 
energy of any extended chemical system. For infinite chains, the sums representing 
these terms are only conditionally convergent, so that direct evaluation is imprac- 
tical, and much attention has been devoted to finding alternative methods for 
computing them [ 1-4]. If  cylindrical coordinates are used, with the axis directed 
along the chain, the essential parameters entering into these sums are the radial 
and axial coordinate differences for pairs of inequivalent sites within a unit cell. 
If we denote such differences by a and/3, respectively, then the basic electrostatic 
sum has the form 

s ( ~ , / 3 )  = Z 1 1 . (1) 
~=1 ,/52+ +~)2 

For large values of a we have Riemann's identity 

~, {x / a2+(n+ /3 )  2 1  nl} = 4  ~ cos(2rrkCl)Ko(2rrka)+2[ln(a/2)-y] 
n = - C ~  k = l  

_ 1/~/~5 +/~2 (2) 

* Dedicated to Professor J. Kouteck~ on the occasion of his 65th birthday 
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obta ined by means of  the Poisson summation formula. The sum on the right 
hand side is exponentially convergent and for a > 1, since the Bessel function 
can be replaced by its asymptotic approximation, this series is easily implemented 
on a programmable calculator. In practice, the numerical schemes devised for 
dealing with (1) experience the most difficulty when a is small. The purpose of 
this note is to present a rapidly convergent resummation of  S(a , /3)  to deal with 
this case 

2. Theory 

We begin with a sequence of  elementary transformations: 

o0 

S(ol,/3) = ~ {[(nq-/3)2q-ot2]-l/2--(nq-fl)-l}q- ~ { ( n + / 3 ) - l - n  -1} 
n = l  n = l  

fo .a. ~=, [ ( n + f l ) 2 + u 2 ]  3/2 

fo (3) 

Here, y is Euler's constant, 0 is the logarithmic derivative of  the gamma function 
[5], and 

r = ~ [(nl-/3)2l-u20~2] -3/2 (4) 
n = l  

The Mellin transform of  q~(a) is 

r = ~r-1/2u-SF(s/2)F(3/2 - s/2)~'(3 - s, 13 + 1), (0 < Re s < 2) (5) 

where ~'(z, v) is the generalized Riemann-Zeta function [6]. Therefore, by the 
Mellin inversion formula, we have the integral representation 

f c+ioo ds 
(~(o~) = "17 "-1/2 ( u a ) - S F ( s / 2 ) F ( 3 / 2 - s / 2 ) C ( 3  - s , / 3  + 1) 2~----i 

, i  c - - i o ~  

( 0 < c < 2 ) .  (6) 

Next, by inserting (6) into (3), we have an apparently new integral representation 
for S(a , /3) :  

f c+io~ du 
S ( a , / 3 ) = - y - ~ , O ( l + / 3 ) + ~  -'/2 - -  u - ' a - " F ( l + u / 2 ) F ( 1 / 2 - u / 2 )  

J c-io~ 27ri 

• ~'(1- u,/3 + 1) ( - 2 <  c < 0 ) .  (7) 

The singularities in the integrand in (7) are a double pole at u = 0, and two 
sequences of  simple poles: u = - 2 ( k  + 1), u = 2k + 1; k = 0, 1, 2 . . . . .  When 0-< a < 
1 the integrand decays exponentially away from the negative real axis in the left 
hand plane, so by Jordan's lemma we can close the contour by an infinite 
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semi-circle and express the integral in terms of the residues at the first sequence 
of simple poles. This gives our principal result 

co 

S ( a , / 3 ) = - y - 6 ( l + / 3 ) -  E (-1)  k+l(2k)! 
k = l  ( k ! )  2 ~ ( 2 k + l ,  f l + l ) ( a / 2 )  2k. (8 )  

Equation (8) can also be derived by expanding the series in (4) in powers of a 
and integrating term by term as indicated in (3). However, the approach we have 
used is very powerful and provides asymptotic expansions quickly in similar 
cases where elementary methods cannot be used. 

For a > 1, the integrand decays oit the real axis into the right hand u-plane; 
however, in this case the rate of decay is only algebraic and not sufficient that 
the contribution to the integral from the neighborhood of infinity can be neglected. 
Indeed, if the contour is closed as before by a large semi-circle into the right 
hand plane, the residue sum gives precisely the non-exponential terms correspond- 
ing to the right hand side of (2). 

The Riemann-zeta functions appearing in (8), which are essentially higher deriva- 
tives of the gamma function, are known exactly for rational values of/3 and have 
been extensively tabulated in other cases (see, e.g., the eighty place tables given 
by Fransen and Wrigge [7]). As an illustration of the utility of (8) we have 
calculated S(a,/3) using a pocket calculator for fl = 0, 1/2 (by symmetry, only 
the range - 1/2 < fi -< I /2 need be considered). In Table 1, we also give the number 
of terms in (8) needed to give nine place accuracy. In these cases (8) reduces to 

S(a, 0) = ( l + a 2 )  -1/2- 1+ T(a/2) 

S(~, 1/2) = 2 In (2/e) - S(a, O) + 2 r ( a ) ,  (9) 

where 

k (2k) I 
T ( a ) =  Y~ (-1) ~ [ ~ ( 2 k + l ) - l ] a  2k~- ,., (--1)kBk azk, (10) 

k = l  ( / ~ ! ]  k = l  

which converges much faster. For convenience we record the coefficients Bk in 
Table 2. 

Table 1. Selected values of  S(cg/3) calculated from (8). N 
denotes the number  of  terms necessary for nine place accuracy 

a S(a, O) S(c~, 1/2) N 

Table 2. Coefficients appearing 
in expressions (9), (10) 

k B k 

1 0.404113806 
0 0 -0.613705639 0 2 0.221566531 
0.02 -0.000240349 -0.613788510 2 3 0.1669855~8 
0.04 -0.000960651 -0.614037020 3 4 0.140587496 
0.05 -0.001500146 -0.614223297 3 5 0.124535527 
0.06 -0.002158678 -0.614450853 3 6 0.113387089 
0.08 -0.003820737 -0.615029496 3 7 0.104978702 
0.10 -0.005971712 -0.615772221 4 8 0.098290764 
0.15 -0.013329806 -0.618340351 5 9 0.092776684 
0.20 -0.023438471 -0.621907938 6 10 0.088110136 



232 M.L. Glasser 

References 

1. Andre JM, Bredas JL, Delhalle J, Ladik J, Leroy G, Moser C (1980) Recent advances in the 
quantum theory of polymers. Lect Notes Phys, vol 113. Springer, Berlin Heidelberg New York 

2. Harris FE (1975) In: Henderson D, Eyring H (eds) Theoretical chemistry, advances and perspec- 
tives, vol 1. Academic Press, New York, pp 147-218 

3. Glasser ML, Zucker IJ (1980) In: Henderson D, Eyring H (eds) Theoretical chemistry, advances 
and perspectives, vol 5. Academic Press, New York, pp 67-140 

4. Delhalle J, Fripiat JG, Piela L (1980) Int J Quantum Chem Quantum Chem Symp 14:431 
5. Abramowitz M, Stegun I (1955) Handbook of mathematical functions. NBS Applied Math Series 

55, chap 6. Washington 
6. Erdelyi A et al. (1953) Higher transcendental functions, vol 1. McGraw-Hill, New York, p 32 
7. Fransen A, Wrigge S (1980) Math Comput 34:553 


